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ABSTRACT: Metal−dielectric composites exhibit remarkable
properties at the percolation threshold. A small variation of the
filling factor can lead to a huge variation in the dc conductivity
from an insulator-like to a metal-like behavior while the real
part of the permittivity diverges. This behavior can, in
principle, be described by percolation theories at low
frequencies and by effective medium approximations at higher
frequencies. These theories assume a random distribution of
the metallic inclusions inside the insulating matrix. But what
happens in ordered structures when the percolation is
deliberately suppressed? Even though a simple, nanometer-wide scratch can deteriorate the dc conductivity of a thin metal
film, can it influence the mirror-like reflectivity? To address this question, we perform a systematic ellipsometric investigation on
nearly closed Au films interrupted only by a two-dimensional periodic mesh of 20 nm wide lines. These nanostructured films
have metal filling factors close to unity, but exhibit no dc conductivity. In the infrared, they show an antireflective behavior that
can be tuned through the mesh periodicity. Surprisingly, the optical response of these structures can be modeled quite well by
simple effective medium approximations. Increasing the size of the squares leads to a tunable, diverging, real part of the
permittivity: a maximum of the real part of the permittivity of 1420 is found for the largest investigated squares in this study.

KEYWORDS: percolation, spectroscopic ellipsometry, antireflective properties, effective medium theory

In the last two centuries, many theories have been developed
and improved to achieve a better description and under-

standing of the properties of heterogeneous composites made
of metal particles embedded in a dielectric matrix.1 Even
though computational electromagnetics enables us to better
examine the influence of the randomness and connectedness of
metallo-dielectric composites, the disadvantage of this approach
is that solving Maxwell’s equations for complex, three-
dimensional (3D) structures for a variety of angles of incidence
and a broad frequency range is still very time-consuming. In
particular, the critical evaluation of the validity limit of the
modeling with effective optical parameters is still very
challenging in the case of complex, heterogeneous samples.
For these reasons, the Bruggeman effective medium approx-
imation (BEMA)2 and the percolation theory3 are often used
because they provide analytical predictions of the effective
optical response of random composites by means of very few
critical parameters. However, the BEMA is expected to fail for
instance around the percolation threshold, i.e., at the critical
filling factor fc where the insulator-to-metal transition occurs.3

There, the assumption of a homogeneous background field
breaks down and hot spots appear, dominating the linear and
nonlinear optical properties.4 For example, for a random
distribution of spherical inclusions, the BEMA predicts fc at
0.33, whereas from percolation theory fc is expected to be at the
Scher−Zallen critical value of about 0.15.5 Independently of the

theoretical approach, the main aim of most of the research in
this field is to understand “real” samples, where “real” means
samples consisting of inclusions with a broad variety of sizes
and shapes randomly distributed in a matrix. The most
prominent examples are ultrathin metal films prepared under
well-defined evaporation conditions. In principle, they can be
described by effective optical parameters. Counterintuitively,
below the percolation threshold they can act as antireflecting
coatings, and at the percolation threshold, the real part of the
permittivity diverges, reaching extremely high positive values.6,7

While random metal−dielectric composites undergo an
insulator-to-metal transition at fc, what happens when the
percolation transition is intentionally suppressed, i.e., when fc is
intentionally pushed toward 1? Can the BEMA theory be
applied even in the extreme case of a filling factor close to 1?
Nowadays, nanolithographic techniques allow the preparation
of artificial nanostructures with a well-defined geometry on a
nanometer scale. Nevertheless up to now, little has been done
in the field of controlled percolation. In principle, one can think
of two extreme cases: the first case corresponds to a very thin
and long metallic wire connecting two electrodes, where the
sample exhibits a dc conductivity while the filling factor is
nearly zero, hence without metallic reflectivity in the near-
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infrared range. This situation can be nicely approximated, for
example, by self-similar curves, e.g., Hilbert curves.8 The other
extreme case is a closed metallic layer with a nanometer-wide
cut preventing dc conductivity although the filling factor is
nearly 1. This is the topic of the present report.
Here we present a systematic study on thin Au films

interrupted only by a two-dimensional periodic mesh of 20 nm
wide gaps forming disconnected squares of size a and
presenting very large gold filling factors. Eleven different
samples were investigated with reflection measurements and
spectroscopic ellipsometry in the wavelength range between
400 and 7000 nm. The samples consist of 20 nm thick nearly
closed gold films, formed by disconnected gold squares
fabricated on SiO2/Si substrates over large areas, with a
nominal square size a varying from 0.1 to 6.4 μm, separated by
gaps of width g of roughly 20 nm, which is kept constant for all
samples (Figure 1). We show that, despite the fact that their
entire surface is almost completely formed by a 20 nm thick
gold layer, which is highly reflective in the infrared frequency
range, a strongly decreased reflectance is observed in a broad
wavelength range from 1 up to 7 μm. We also demonstrate that
the minimum of the reflectance can be tuned by increasing a.
Moreover we report how, even for gold filling factors above
90%, the measured reflectance is significantly affected by the
presence of a few gaps, and it strongly differs from that of a
completely closed 20 nm thick gold film. Finally we show that,
despite the fact that our structures are two-dimensional
inverted gratings with a period comparable to the wavelength
of the incident light, surprisingly it is still possible to model the
optical response of these samples by a simple isotropic BEMA
model. By intentionally suppressing the percolation, extremely
high values of the real part of the dielectric function can be
reached through the precise control of the metal filling factor f,
obtained by varying the periodicity of the gaps.

■ SAMPLE DESCRIPTION
The square patterns were fabricated by electron-beam
lithography on a silicon wafer covered by a thermally grown,
300 nm thick SiO2 layer.

9 The fabrication process allows us to
precisely control the width of the gaps down to 20 nm and to
obtain large patterned areas (1.5 × 1.5 mm or larger). The large
sample sizes are necessary in order to perform angular-
dependent reflectance and spectroscopic ellipsometry measure-
ments with a well-defined k-vector up to large angles of

incidence. We fabricated 11 samples increasing the gold filling
factor fm by changing the nominal size of the squares a from 0.1
to 6.4 μm and keeping the gap g constant at 20 nm. In this way
the gold filling factor fm extracted from the analysis of the
scanning electron microscope (SEM) images increases from
70.2% for the squares of size a ≈ 0.1 μm up to 99.5% for the
sample with size a = 6.4 μm. Figure 1a illustrates the three-
dimensional design of the samples. The SEM images of seven
different gold square patterns are exhibited in Figure 1b−h on a
uniform scale.

■ EXPERIMENTAL RESULTS
Three different sets of measurements were performed on the
samples: (1) spectroscopic ellipsometric measurements in the
spectral range between 400 and 2200 nm at angles of incidence
varying between 40° and 60° in steps of 5° with the plane of
incidence parallel to the meshes; (2) oblique incidence
reflection measurements with p-polarized light in the range
400 to 2200 nm and angles of incidence between 30° and 70°
in steps of 2°, both measurements 1 and 2 being performed
with a Woollam variable-angle spectroscopic ellipsometer
(WVASE); (3) reflectance measurements at normal incidence
using unpolarized light in the spectral range between 600 and
7000 nm performed with a Bruker IFS 66/s Fourier-transform
infrared spectrometer using a silicon detector in the wavelength
range between 600 and 1250 nm and an MCT detector in the
wavelength range between 1250 and 7000 nm. For the latter
measurements an infrared Hyperion microscope was employed
with numerical aperture NA = 0.4. This leads to an ill-defined
incident wave-vector in contrast to the measurements
performed with the ellipsometer where the incident wave-
vector is well-defined within 0.01°. In Figure 2a and b the
results of the reflectance measurements over the entire
frequency range for the different square sizes a are shown
together with the reflectance of the bare Si/SiO2 substrate and
that of a 20 nm thick closed gold film for comparison. The
reflectance of the bare substrate is governed by interference
effects in the 300 nm thick SiO2 layer. The reflectance of the
closed 20 nm thick Au film resembles that of a thick Au film
with a flat reflectance of roughly 95% in the infrared and the
characteristic interband transitions in the visible. Both curves
can be satisfactorily modeled by a two- (Si/SiO2) and three-
layer (Si/SiO2/Au) system with the above-mentioned thick-
nesses by the Woollam VASE software (Figure 2c and d). In

Figure 1. (a) Schematic drawing representing gold square array with square size a, thickness t, and gap width g on a Si/SiO2 substrate. (b−h) SEM
images (6 × 6 μm2) of seven different square patterns with thickness t = 20 nm and lateral sizes a ranging from (b) 0.1 μm to (h) 6.4 μm as
indicated. The gap g is roughly 20 nm for all samples. The gold filling factor fm extracted from the analysis of the SEM images increases with
increasing square size a from (b) 70% to (h) 99.5%.
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Figure 2b the reflectance of the bare substrate shows a
maximum around 835 nm, it goes through a minimum at about
1680 nm, and it rises again, reaching a plateau with an intensity
of 0.3. Interestingly, the reflectance of the 0.1 μm square array
shows a very similar trend to that of the bare substrate with a
slightly larger, red-shifted reflectance maximum followed by a
broad, lower reflectance minimum at about 2200 nm compared
to that of the bare substrate. Combining transmittance and
reflectance measurements reveals also that, in the wavelength
region where the reflectance of the samples is lower than that of
the bare substrate, the absorbance of the square arrays is higher
than that of the bare substrate (see Supporting Information).
The presence of the plasmonic resonance of the small squares is
apparent to the blue side of the reflectance maximum. Although
the gold filling factor of the 0.1 μm square pattern is already
70%, it behaves as a dielectric layer supporting a plasmonic
resonance. The dielectric behavior corresponds to an increase
of the effective thickness of the SiO2 layer. With increasing
square size a (gold filling factor fm) the patterned films start to
absorb more and more in the near-infrared, leading to an
increased reflectance until nearly metallic behavior is reached.
The reflectance of the two samples with the largest squares (a =
3.2 and 6.4 μm) is close to that of the 20 nm thick closed gold
film especially in the visible and near-infrared range (Figure 2a).
However, even though for a = 6.4 μm the filling factor reaches
99.5%, the reflectance at large wavelength decreases, in contrast
to the expected behavior for a Drude metal; that is to say, the
light does “sense” the presence of the gaps (Figure 2b). A real
drop of the reflectance is observed for squares with a between
0.2 and 1.6 μm, with the intensity reaching the lowest value of
5% for a = 0.2 μm. Moreover, for all patterned films up to a =
0.8 μm the reflectance at the minimum is well below that of the
bare substrate; that is, they act as an effective antireflection
coating for the infrared light. The results discussed up to now
can in principle be gained from the FTIR measurements alone
shown in Figure 2b. The drawback of this measurement is that
the reflectance is obtained under an IR microscope with NA =

0.4, and therefore the results are averaged over a large range of
incident angles. Under these conditions specific features
stemming from the periodicity of our patterned samples,
namely, the influence of the Rayleigh−Wood’s anomalies
expected for grating structures, are smeared out.10,11 In the
limited frequency range of the ellipsometer the overall
reflectance measured at an angle of incidence of 30° with p-
polarized light shown in Figure 2a is almost the same as that of
the reflectance of Figure 2b measured with the FTIR
spectrometer, but for the same specimens extra features appear.
In the samples with a = 0.8 and 1.6 μm for example,
additionally sharp dips at about 1200 nm can clearly be
identified in Figure 2a that are not present in the FTIR
measurements. The dips can be attributed to the Rayleigh−
Wood’s anomalies. This can be clearly confirmed by additional
dispersion measurements. In Figure 3c a reflectance contour

plot of the 0.8 μm square array measured with p-polarized light
over an angle of incidence between 30° and 70° in steps of 2° is
displayed. The spectral positions of the Rayleigh−Wood’s
anomalies are additionally plotted in Figure 3c. A clear
influence of the grating structure can be seen due to the effect
of the first substrate modes and, in particular, of the air modes.
The dispersion of the Rayleigh−Wood’s anomalies is described
by the equation λR = p/m*[n + sin(θ)], which determines the
wavelength at which a diffracted order becomes tangent. Here p
is the period of the grating (0.8 μm), m is the diffraction order,
n is the refractive index (nSiO2 = 1.5 for the substrate and n = 1
for the air), and θ is the angle of incidence. For the smaller
squares as well as for the larger squares the Rayleigh−Wood’s
anomalies lie outside the spectral range covered by the
ellipsometer. From Figure 3, one can also see that the
antireflective properties of all the samples hold over a broad
range of angles of incidence. Similarly to the description given
in Figure 2, the 0.1 μm sample reflectance contour plot is

Figure 2. (a) Experimental and (c) simulated reflectance at an angle of
incidence of 30° between 400 and 2200 nm for square patterns with
different square size a, for the bare Si/SiO2 substrate (dark gray) and
for a 20 nm thick closed gold film (orange). (b) Experimental and (d)
simulated reflectance at normal incidence between 600 and 7000 nm
for square patterns with different square size a, for the bare Si/SiO2
substrate (dark gray) and for a 20 nm thick closed gold film (orange).

Figure 3. Contour plot of the (a) measured and (b) modeled
reflectance with p-polarized light between 30° and 70° in steps of 2° in
the spectral range between 400 and 2200 nm for the square array with
size a = 0.1 μm. Contour plot of the (c) measured and (d) modeled
reflectance with p-polarized light between 30° and 70° in steps of 2° in
the spectral range between 400 and 2200 nm for the square array with
size a = 0.8 μm. The dashed lines in (c) correspond to Rayleigh−
Wood’s anomalies.
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characterized by an interference pattern due to the SiO2 layer,
slightly modified by the presence of the gold squares. The main
reflectance maximum is present up to 60° and follows the
expected dispersion. The plasmonic resonance, due to the
excitation of the localized surface plasmon resonance of the
small gold squares, is nondispersive, as expected. The
antireflective properties of the investigated sample hold over
a broad range of wavelengths and cover a broad range of angles
of incidence spanning from normal incidence to very large
angle, for s-polarized light as well (see the Supporting
Information). The larger squares are dominated by the red-
shift of the reflectance minimum to wavelengths outside the
measured range and are therefore characterized by an increased
reflectance in the near-infrared range, independently of the
angle of incidence (Figure 3c). The dispersive behavior of the
other samples is very similar (not shown).

■ SIMULATION AND DISCUSSION
In order to retrieve a reliable model for the effective optical
response of the samples, the ellipsometric data together with
the reflectance data obtained by the ellipsometer as well as from
the FTIR spectrometer were simultaneously fitted by a three-
layer model composed of a 20 nm thick BEMA layer, a 300 nm
SiO2 layer, and the 1 mm Si substrate. In the BEMA, the
complex effective dielectric functions εeff of the nanostructured
Au films are calculated by
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where L is the depolarization factor, which relates the
polarizability of the metallic inclusions (gold squares) in the
direction of the applied field to their shape, fm is the filling
factor of the metallic squares, εa is the complex dielectric
constant of the gaps (air, εa = 1), and εb is the complex
dielectric function of a 20 nm closed gold film. The permittivity
of the Au film has been obtained by modeling an unstructured
part of the same sample. The only free fit parameters left in our
BEMA model are L and fm. Figure 4a and b show the results for

L and fm obtained by fitting all investigated samples with
respect to the square size. Both parameters rapidly increase to 1
with increasing a, reaching in both cases maximum value of
0.995. The interference effects responsible for the antireflective
properties of the samples can be explained by the BEMA model
as a result of the particular effective permittivity of the gold
square arrays, which follows a similar trend to that of

semicontinuous gold films below the percolation threshold.7

The effective ε1 increases with the square size a for longer
wavelengths, whereas the ε2 peak gets broader and larger while
red-shifting (see the Supporting Information). The suppressed
reflectance occurs in the frequency range where the gold square
patterns act as a mere dielectric layer with positive ε1 and very
low ε2. In the case of the square array with size a = 0.1 μm,
almost no light is absorbed by the gold squares as a result of the
combination of a positive ε1 and a zero value of ε2 over the
whole infrared range. As a increases, the gold squares absorb
more and more incoming light over a broader range of
wavelengths, resulting in an increased reflectance up to values
comparable to that of a closed gold film. However, the metallic
behavior characterized by a negative ε1 and a large absorption is
never reached fully over the whole wavelength range, leading to
a shift of the minimum of the reflectance toward higher
wavelengths outside the displayed range (not shown). The
simulated reflectance obtained with the BEMA model is plotted
in Figure 2c and d. Although in the BEMA model there are only
two free fit parameters, L and fm, the calculated reflectance
nearly perfectly coincides with the measured reflectance over
the whole frequency range from 400 up to 7000 nm. In order to
assign effective medium properties to our nanostructured Au
films, the BEMA model has to work also over a broad range of
angles of incidence. Figure 3b and d display the simulated p-
polarized reflectance in the range between 400 and 2200 nm at
an angle of incidence varying from 30° to 70° for the square
arrays with a = 0.1 and 0.8 μm, respectively. The comparison
reveals a very good quantitative agreement between the
experimental and simulated data for the two samples even
over the broad k-range, confirming that the assignment of
effective optical parameters is justified in this case. These
conclusions are also valid for the other square sizes (not
shown). Only the sharp features coming from the Rayleigh−
Wood’s anomaly marked with dashed lines in Figure 3c and the
presence of the plasmonic resonances for the smaller squares
are not reproduced by the simple BEMA, as it does not account
for periodicity. In fact one would expect that the main
limitation of the BEMA model in describing the optical
behavior of ordered nanostructures is that their period must be
much smaller than the wavelength of the incident radiation.
Under this condition, diffraction effects are not present and the
nanostructure can be treated as a homogeneous material with
effective optical properties.12,13 Due to these limitations, many
complex methods have been developed to model the optical
properties of two-dimensional gratings, such as rigorous couple-
wave analysis14 and discrete dipolar approximation.15 On the
other hand, Kravets et al. have already reported how an
effective medium approach provides a surprisingly good
qualitative description of the transmittance and reflectance in
the visible and near-infrared range of a nanostructured one-
dimensional metallic grating with low filling factors f and a
period comparable to the wavelength, taking into account
polarization-dependent dipole interactions between the stripes
via the depolarization factor.16 However, in their work the
nanorods were separated by more than 100 nm; hence the
near-field coupling between the grating lines should be small.
Consequently, the assumption of a homogeneous background
field in which the particles are embedded still stands and an
effective medium theory can, in principle, be applied. As further
proof of the correctness of our isotropic BEMA model,
azimuthal-dependent reflectance measurements were per-
formed for the samples with a = 0.1 and 0.8 μm (see the

Figure 4. Comparison between (a) depolarization factor L and (b)
gold filling factor fm used in the model and the ones calculated using
the geometrical parameters extracted from the SEM images for the
different samples.
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Supporting Information). Although our samples are two-
dimensional periodic arrays, the optical response of the samples
is totally isotropic, except for the azimuth-dependent effect of
the Rayleigh-Wood’s anomalies on the reflectance of the
sample with a = 0.8 μm. The result confirms the choice of an
isotropic BEMA model for the analyses of the optical properties
of the structures.
The depolarization factor L and the filling factor fm were

treated as pure fitting parameters up to now; on the other hand,
they both have a physical meaning, and they can, in principle,
be calculated from the geometry of the sample. In our effective
medium model the gold squares can be approximated by very
flat disks of dimensions a along the x- and y-directions and t ≪
a along the z-direction. In general, effective medium theories
assume that the fluctuations of the local field around its mean
value should average to zero and that the inclusions are
relatively far away from each other so that interactions are
simply not present. Under this assumption the geometrical
depolarization factor L of a flat isolated inclusion (oblate
spheroid) oriented perpendicular to the applied field can be
deduced from its three axes according to the formula

= + − −⎜ ⎟⎛
⎝

⎞
⎠L

r
r r

r
1

1
1

tan
2

2
1

(2)

where r2 = (x2/z2) − 1.17 In general, L → 1 in the case of flat
oblate spheroids oriented perpendicular to the applied field,
whereas L → 0 for an electric field parallel to its plane. The
effective depolarization factor L calculated with eq 2 and the
gold filling factor fm for the different samples calculated from
the geometrical parameters of the square arrays extracted from
the SEM images of the samples are plotted in Figure 4 together
with the corresponding values of the fitted parameters obtained
by fitting the BEMA model to the measured optical data. A
metallic inclusion in an electric field will produce a screening
charge at its boundaries in opposition to the applied electric
field. If all the boundaries between the inclusions and the matrix
are parallel to the applied field, little screening charge is
developed; on the contrary, if all the boundaries are
perpendicular to the applied field, the screening effect will be
maximum and the electric field will not see the inclusions.18

These two limits of “no screening” and “maximum screening”,
respectively, are defined by the Wiener bounds describing the
effective permittivity of a two-phase composite regardless of
composition and microstructure.18 In our samples composed of
subwavelength two-dimensional square arrays, a propagating
light beam with electric field polarized parallel to the surface of
the squares will always have the polarization perpendicular to
the boundary; hence L → 1 in all directions. This leads to a
new effective depolarization factor Leff, which still can be
deduced from eq 2 by considering the squares as oblate
spheroids with the calculated depolarization factor L always
associated with the axis of rotation that is parallel to the applied
field (Leff = L).19 The agreement between the values calculated
from pure geometry and the ones obtained by fitting the
experimental data is very good. The same goes for the
geometrical fm and the effective fm obtained from the BEMA
model. The main difference is that the fitted effective values for
L and fm increase even faster to 1 with increasing square size
than the geometrical estimated. In the BEMA theory the critical
filling factor fc defining the percolation threshold and the
depolarization parameter L describing the shape of the
inclusions are closely connected by L = fc (2). In the limit of

an infinite flat disk (a → ∞), e.g., corresponding to a closed
metallic film, both parameters should therefore become 1. In
our artificial nanostructured Au films the percolation is
prevented by deliberate cuts, and therefore this condition is
never fulfilled. The suppression of the percolation via the
presence of the roughly 20 nm wide gaps prevents the
development of so-called “hot spots”, i.e., areas with very small
gaps leading to huge field enhancement, accompanying the
transition into the metallic state, as it is normally observed in
the case of random percolating two-dimensional nano-
composites.20 In other words, although some limited field
enhancement inside the gaps is expected and the condition of a
homogeneous mean field surrounding the gold squares should
in principle not be valid anymore, the gaps are too large to
create hot spots.21 Due to the homogeneous gap width, all the
squares are indeed embedded in a homogeneous background
field, and therefore the BEMA model still holds.
As it was already shown by Efros et al. in their seminal paper,

the real part of the permittivity is expected to diverge at the
percolation threshold.22 The divergence can be qualitatively
interpreted by the increased capacitive coupling between
adjacent particles with increasing filling factor. Each pair of
nearest particles forms a capacitor, with an effective surface that
tends to infinity and its distance to zero at the percolation
threshold. Hence, for random samples, the effective capacity of
the system diverges. In our artificial system, the effective surface
as well as the distance between the squares is controlled by the
geometry of the nanostructure, and one needs to be careful
with the interpretation framework of the simple capacitor
picture. Since the percolation threshold is pushed toward 1, the
effective real part of the permittivity keeps on increasing with
the filling factor, i.e., with the square size. In Figure 5, the

divergence of the real part of the dielectric function ε1 obtained
at λ = 7 μm is shown as a function of fm. In principle, the trend
is the same as in the case of randomly evaporated Au films
except that with an artificially suppressed percolation much
higher maximum values of the permittivity can be reached.7

The highest value of ε1 we obtained for the 6.4 μm square is
1420, which is 1 order of magnitude larger than in random
metal−dielectric nanostructures and is, to the best of our
knowledge, the highest value ever measured for a metallodi-
electric composite at infrared frequencies.

■ CONCLUSION
In summary, we have shown that a 2D periodic mesh of 20 nm
wide gaps in a 20 nm thick Au film interrupting the dc

Figure 5. Divergence of the real part of the dielectric function ε1
obtained at λ = 7 μm as a function of the calculated gold filling factor
for the different square arrays of size a. The ε1 for a closed gold film of
20 nm thickness is also shown.
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conductivity dramatically changes the optical response in the
visible and infrared frequency range. Preventing percolation,
tunable antireflective properties can be achieved for a broad
range of angles of incidence and over a wide frequency range in
the infrared. The entire optical behavior can be modeled over
the whole frequency range and a large variety of angles of
incidence, by an effective optical permittivity using a simple
isotropic BEMA approach with only two adjustable parameters,
namely, the filling factor fm and the effective depolarization
factor L, which takes into account the strong interaction
between the gold squares. The suppressed percolation leads to
the divergence of the real part of the dielectric function ε1 in
the infrared frequency range, reaching values 1 order of
magnitude higher than that obtained in random metal−
dielectric nanostructures.

■ METHODS

The square arrays were fabricated using a Jeol JBX6300FS
electron beam lithography system on a doped silicon substrate
with a thermally grown 300 nm thick silicon dioxide top layer.
Two different resists were applied on the substrate in two
consecutive steps via spin-coating. First 80 nm of poly(methyl
methacrylate) (PMMA) 950k was spin coated on the substrate
followed by a layer of 30 nm of HSQ. In order to prevent resist
intermixing, the layer of PMMA was prebaked on a hot plate at
160 °C for 4 min before the layer of HSQ was spin-coated. The
square arrays were then exposed into the resist over a total
exposed area of 2.5 mm by 1.5 mm for the samples with a
square size of approximately 0.1 and 0.2 μm. All the other
samples were exposed over a total area of 1.5 mm by 1.5 mm. A
large patterned area is crucial to perform optical measurements
with the ellipsometer, in particular at high angles of incidence.
The exposure parameters were 100 kV of acceleration voltage
and a dose of 8 mC/cm2. The exposure is followed by the
development of the HSQ top layer in Microposit MF322,
which results in a fishnet-like grid. To stop the development,
the sample is rinsed in an overflow bath with deionized water
for 30 s. Using any organic solvent for rinsing would dissolve
the PMMA immediately, as the PMMA is strongly overexposed.
In order to transfer the HSQ mask into the PMMA, reactive ion
etching is applied. Thermal evaporation was then used to
deposit a 2 nm thick adhesion layer of Cr with an evaporation
rate of 1 Å/s and 20 nm of Au with an evaporation rate of 2 Å/
s. Finally, a 1 h long N-ethyl-2-pyrrolidone bath at 80 °C was
used during the lift-off, followed by low-power ultrasonic
agitation for a few seconds at the end of the process. The
sample was rinsed in acetone and 2-propanol and dried with a
N2 spray gun.
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